Synthesis and Evaluation of Bakuchiol Derivatives as Potential Anticancer Agents.

نویسندگان

  • Cheng-Zhu Wu
  • Da-Chuan Liu
  • Xing Guo
  • Yiqun Dai
  • Tao Ma
  • Hong-Mei Li
  • Qiang Huo
چکیده

A series of bakuchiol derivatives were synthesized and evaluated for their anti-proliferative and the inhibitory activities on SMMC7721 cell line migration using PX-478 as a positive control. The results showed (S,E)-4-(7-methoxy-3,7-dimethyl-3-vinyloct-1-en-1-yl)phenol (10) to have the best activity among the tested compounds, which included PX-478. In addition, compound 10 showed greater inhibitory activity than that of bakuchiol in the transwell migration and invasion assays at every dose. In western blotting tests, compound 10 showed a promising ability to downregulate the expression of HIF-1α and its associated downstream proteins MMP-2 and MMP-9. Moreover, this effect was dose-dependent and could represent a possible mechanism of action for the anticancer activity of compound 10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2-(4-Fluorophenyl)-N-phenylacetamide Derivatives as Anticancer Agents: Synthesis and In-vitro Cytotoxicity Evaluation

Cancer is a major global problem and is the second leading cause of mortality in the developed countries.Resistance to current chemotherapeutics and high incidence of adverse effects are the two principal reasons for developing new anticancer agents. Phenylacetamide derivatives can act as potential anticancer agents. Synthesis and screening of 2-(4-Fluorophenyl)-N-phenylacetamide derivatives in...

متن کامل

N-(5-Mercapto-1,3,4-Thiadiazol-2-yl)-2-Phenylacetamide Derivatives: Synthesis and In-vitro Cytotoxicity Evaluation as Potential Anticancer Agents

A new series of N-(5-Mercapto-1,3,4-thiadiazol-2-yl)-2-phenylacetamide derivatives (3a-3j) were synthesized via an amidation reaction using EDC and HOBt in acetonitrile solvent at room temperature condition. Chemical structures were characterized by 1H NMR, IR and MS spectroscopic methods and related melting points were also determined. The anticancer activity was evaluated using MTT procedure ...

متن کامل

2-(4-Fluorophenyl)-N-phenylacetamide Derivatives as Anticancer Agents: Synthesis and In-vitro Cytotoxicity Evaluation

Cancer is a major global problem and is the second leading cause of mortality in the developed countries.Resistance to current chemotherapeutics and high incidence of adverse effects are the two principal reasons for developing new anticancer agents. Phenylacetamide derivatives can act as potential anticancer agents. Synthesis and screening of 2-(4-Fluorophenyl)-N-phenylacetamide derivatives in...

متن کامل

Synthesis and Cytotoxicity Evaluation of N-(5-(Substituted-benzylthio)-1,3,4-thiadiazole-2-yl)-2-p-nitrophenylacetamide Derivatives as Potential Anticancer Agents

Cancer is a big global problem and is one of the top and main causes of mortality in developed countries. Many of the current treatments and anticancer therapeutics have problems with severe side effects and on the other hand, the drug resistance is also another obstacle in the cancer chemotherapy. Hence, there is a strong demand for the discovery and development of effective new antineopla...

متن کامل

N-(5-Mercapto-1,3,4-Thiadiazol-2-yl)-2-Phenylacetamide Derivatives: Synthesis and In-vitro Cytotoxicity Evaluation as Potential Anticancer Agents

A new series of N-(5-Mercapto-1,3,4-thiadiazol-2-yl)-2-phenylacetamide derivatives (3a-3j) were synthesized via an amidation reaction using EDC and HOBt in acetonitrile solvent at room temperature condition. Chemical structures were characterized by 1H NMR, IR and MS spectroscopic methods and related melting points were also determined. The anticancer activity was evaluated using MTT procedure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 23 3  شماره 

صفحات  -

تاریخ انتشار 2018